67 research outputs found

    Bandgap narrowing in Mn doped GaAs probed by room-temperature photoluminescence

    Full text link
    The electronic band structure of the (Ga,Mn)As system has been one of the most intriguing problems in solid state physics over the past two decades. Determination of the band structure evolution with increasing Mn concentration is a key issue to understand the origin of ferromagnetism. Here we present room temperature photoluminescence and ellipsometry measurements of Ga_{100%-x}Mn_{x}As alloy. The up-shift of the valence-band is proven by the red shift of the room temperature near band gap emission from the Ga_{100%-x}Mn_{x}As alloy with increasing Mn content. It is shown that even a doping by 0.02 at.% of Mn affects the valence-band edge and it merges with the impurity band for a Mn concentration as low as 0.6 at.%. Both X-ray diffraction pattern and high resolution cross-sectional TEM images confirmed full recrystallization of the implanted layer and GaMnAs alloy formation.Comment: 24 pages, 7 figures, accepted at Phys. Rev. B 201

    Extended Infrared Photoresponse in Te-Hyperdoped Si at Room Temperature

    Full text link
    Presently, silicon photonics requires photodetectors that are sensitive in a broad infrared range, can operate at room temperature, and are suitable for integration with the existing Si-technology process. Here, we demonstrate strong room-temperature sub-band-gap photoresponse of photodiodes based on Si hyperdoped with tellurium. The epitaxially recrystallized Te-hyperdoped Si layers are developed by ion implantation combined with pulsed-laser melting and incorporate Te-dopant concentrations several orders of magnitude above the solid solubility limit. With increasing Te concentration, the Te-hyperdoped layer changes from insulating to quasi-metallic behavior with a finite conductivity as the temperature tends to zero. The optical absorptance is found to increase monotonically with increasing Te concentration and extends well into the mid-infrared range. Temperature-dependent optoelectronic photoresponse unambiguously demonstrates that the extended infrared photoresponsivity from Te-hyperdoped Si p-n photodiodes is mediated by a Te intermediate band within the upper half of the Si band gap. This work contributes to pave the way toward establishing a Si-based broadband infrared photonic system operating at room temperature.Comment: 18 pages, 7 figure

    Bound-to-bound and bound-to-continuum optical transitions in combined quantum dot - superlattice systems

    Full text link
    By combining band gap engineering with the self-organized growth of quantum dots, we present a scheme of adjusting the mid-infrared absorption properties to desired energy transitions in quantum dot based photodetectors. Embedding the self organized InAs quantum dots into an AlAs/GaAs superlattice enables us to tune the optical transition energy by changing the superlattice period as well as by changing the growth conditions of the dots. Using a one band envelope function framework we are able, in a fully three dimensional calculation, to predict the photocurrent spectra of these devices as well as their polarization properties. The calculations further predict a strong impact of the dots on the superlattices minibands. The impact of vertical dot alignment or misalignment on the absorption properties of this dot/superlattice structure is investigated. The observed photocurrent spectra of vertically coupled quantum dot stacks show very good agreement with the calculations.In these experiments, vertically coupled quantum dot stacks show the best performance in the desired photodetector application.Comment: 8 pages, 10 figures, submitted to PR

    Silizium-basierte Lichtemitter : Neue Möglichkeiten für Lab-on-Chip Systeme?

    Get PDF
    Die Realisierung von Lichtemittern in herkömmlicher Siliziumtechnologie ist ein großer Traum der Mikroelektronik. Aufgrund seines indirekten Bandgaps ist Silizium prinzipiell schlecht als Lichtemitter geeignet. Teure und aufwendige andere Verfahren und Werkstoffe (z.B. Verbindungshalbleiter wie GaAs, GaN, SiC usw.) fanden Verwendung für Leuchtdioden und werden heute kommerziell eingesetzt. Diese sind jedoch nicht in herkömmliche Silizium-Chipstrukturen integrierbar. Die Integration in die Silizium – Technologie ist jedoch von eminenter Bedeutung für die kostengünstige Herstellung von Emitterarrays, die neben der Nutzung für integrierte Systeme der Mikrosystemtechnik und der optischen Informationsübertragung auf und zwischen Chips auch zur Lumineszenzanregung von Farbstoffmolekülen in Lab-on-Chip Systemen dienen können. Seit Anfang der 90er Jahre kann durch modifizierte Schichten und Strukturen im Nanometerbereich die bisherige Beschränkung des Siliziums überwunden werden. So können in Siliziumdioxid eingebettete Nanostrukturen aufgrund ihrer speziellen Eigenschaften zur Lumineszenz angeregt werden. In den hier beschriebenen Untersuchungen werden Nanostrukturen durch Ionenimplantation in thermisch auf einen Siliziumwafer (100, n-Typ) aufgewachsene SiO2 – Schichten erzeugt. Im Anschluß an die Ionenimplantation werden durch eine Temperung Strahlenschäden ausgeheilt und die Clusterbildung angeregt. Die so erhaltenen Nanocluster weisen Größen von 4 ... 6 nm auf. Als Frontkontakt der Lumineszenzstrukturen wird eine aufgesputterte transparente Indium-Zinnoxid (ITO) - Schicht lithographisch in kreisrunde Flächen von 0.2mm2 strukturiert. Der Rückseitenkontakt wird durch Al - Beschichtung der Wafersrückseite hergestellt

    Intraband transitions in quantum dot-superlattice heterostructures

    Get PDF
    8 pages, 10 figuresWe present a scheme of adjusting the mid-infrared absorption properties to desired energy transitions in quantum dot-based photodetectors by combining band gap engineering with the self-organized growth of quantum dots. Embedding the self-organized InAs quantum dots into an AlAs/GaAs superlattice enables us to tune the optical transition energy by changing the superlattice period as well as by changing the growth conditions of the dots. Using a one-band envelope function framework, we are able, in a three-dimensional calculation, to predict the absorption spectra of these devices as well as their polarization properties. These calculations further predict a strong impact of the dots on the superlattice minibands. By comparing aligned, periodic dot stacks with nonperiodic dot arrangements within the superlattice, we can experimentally confirm this prediction

    Intense green-yellow electroluminescence from Tb+-implanted silicon-rich silicon nitride/oxide light emitting devices

    Full text link
    High optical power density of 0.5 mW/cm2, external quantum efficiency of 0.1%, and population inversion of 7% are reported from Tb+-implanted silicon-rich silicon nitride/oxide light emitting devices. Electrical and electroluminescence mechanisms in these devices were investigated. The excitation cross section for the 543 nm Tb3+ emission was estimated under electrical pumping, resulting in a value of 8.2 × 10−14 cm2, which is one order of magnitude larger than one reported for Tb3+:SiO2 light emitting devices. These results demonstrate the potentiality of Tb+-implanted silicon nitride material for the development of integrated light sources compatible with Si technology

    Electrical and light-emitting properties of silicon dioxide co-implanted by carbon and silicon ions

    No full text
    In this paper we explore the electrophysical and electroluminescence (EL) properties of thermally grown 350 nm thick SiO₂ layers co-implanted with Si⁺ and C⁺ ions. The implanting fluencies were chosen in such a way that the peak concentration of excess Si and C of 5-10 at.% were achieved. Effect of hydrogen plasma treatment on electroluminescent and durability of SiO₂ (Si,C) - Si-system is studied. Combined measurements of charge trapping and EL intensity as a function of the injected charge and current have been carried out with the aim of clarifying the mechanisms of electroluminescence. EL was demonstrated to have defect-related nature. Cross sections of both electron traps and hole traps were determined. EL quenching at a great levels of injected charge is associated with strong negative charge capture, following capture of positive charge leading to electrical breakdown of SiO₂ structures
    corecore